<menu id="qs4mc"><sup id="qs4mc"></sup></menu>
<menu id="qs4mc"><menu id="qs4mc"></menu></menu>
<menu id="qs4mc"><object id="qs4mc"></object></menu>
<xmp id="qs4mc">
歡迎訪問甘肅天朗化工科技有限公司官方網站!
咨詢熱線:13993138820

化工設計

您現在的位置是: 主頁 > 化工設計 >

合成氨技術簡介

來源:煤化工設計 時間:2018-01-29 17:06 點擊:
合成氨指由氮和氫在高溫高壓和催化劑存在下直接合成的氨(synthetic ammonia,別名氨氣,分子式為NH3)。合成氨的主要原料來源于天然氣、輕油、重油、煤等。農業上使用的氮肥,除氨水外,諸如尿素、硝酸銨、磷酸銨、氯化銨以及各種含氮復合肥都是以氨為原料生產的。 合成氨工業在20世紀初期形成,開始用氨作火炸藥工業的原料,為戰爭服務,第一次世界大戰結束后,轉向為農業、工業服務。隨著科學技術的發展,對氨的需要量日益增長。 1發現 德國化學家哈伯(F.Haber,1868-1934)從1902年開始研究由氮氣和氫氣直接合成氨。于1908年申請專利,即“循環法”,在此基礎上,他繼續研究,于1909年改進了合成,氨的含量達到6%以上。這是目前工業普遍采用的直接合成法。反應過程中為解決氫氣和氮氣合成轉化率低的問題,將氨產品從合成反應后的氣體中分離出來,未反應氣和新鮮氫氮氣混合重新參與合成反應。合成氨反應式如下: N2+3H2≒2NH3(該反應為可逆反應,等號上反應條件為:“高溫、高壓”,下反應條件為:“催化劑”) 2催化機理 熱力學計算表明,低溫、高壓對合成氨反應是有利的,但無催化劑時,反應的活化能很高,反應幾乎不發生。當采用鐵催化劑時,由于改變了反應歷程,降低了反應的活化能,使反應以顯著的速率進行。目前認為,合成氨反應的一種可能機理,首先是氮分子在鐵催化劑表面上進行化學吸附,使氮原子間的化學鍵減弱。接著是化學吸附的氫原子不斷地跟表面上的氮分子作用,在催化劑表面上逐步生成-NH、-NH2和NH3,最后氨分子在表面上脫吸而生成氣態的氨。上述反應途徑可簡單地表示為: xFe + N2→FexN FexN +[H]→FexNH FexNH +[H]→FexNH2 FexNH2 +[H]→FexNH3→xFe+NH3 在無催化劑時,氨的合成反應的活化能很高,大約335 kJ/mol。加入鐵催化劑后,反應以生成氮化物和氮氫化物兩個階段進行。第一階段的反應活化能為126kJ/mol~167 kJ/mol,第二階段的反應活化能為13kJ/mol。由于反應途徑的改變(生成不穩定的中間化合物),降低了反應的活化能,因而反應速率加快了。 3工藝流程 合成氨的主要原料可分為固體原料、液體原料和氣體原料。經過近百年的發展,合成氨技術趨于成熟,形成了一大批各有特色的工藝流程,但都是由三個基本部分組成,即原料氣制備過程、凈化過程以及氨合成過程。 (1)原料氣制備:將煤和天然氣等原料制成含氫和氮的粗原料氣。對于固體原料煤和焦炭,通常采用氣化的方法制取合成氣;渣油可采用非催化部分氧化的方法獲得合成氣;對氣態烴類和石腦油,工業中利用二段蒸汽轉化法制取合成氣。 (2)凈化: 對粗原料氣進行凈化處理,除去氫氣和氮氣以外的雜質,主要包括變換過程、脫硫脫碳過程以及氣體精制過程。 ① 一氧化碳變換過程 在合成氨生產中,各種方法制取的原料氣都含有CO,其體積分數一般為12%~40%。合成氨需要的兩種組分是H2和N2,因此需要除去合成氣中的CO。變換反應如下: CO+H2O→H2+CO2 =-41.2kJ/mol 由于CO變換過程是強放熱過程,必須分段進行以利于回收反應熱,并控制變換段出口殘余CO含量。第一步是高溫變換,使大部分CO轉變為CO2和H2;第二步是低溫變換,將CO含量降至0.3%左右。因此,CO變換反應既是原料氣制造的繼續,又是凈化的過程,為后續脫碳過程創造條件。 ② 脫硫脫碳過程 各種原料制取的粗原料氣,都含有一些硫和碳的氧化物,為了防止合成氨生產過程催化劑的中毒,必須在氨合成工序前加以脫除,以天然氣為原料的蒸汽轉化法,第一道工序是脫硫,用以保護轉化催化劑,以重油和煤為原料的部分氧化法,根據一氧化碳變換是否采用耐硫的催化劑而確定脫硫的位置。工業脫硫方法種類很多,通常是采用物理或化學吸收的方法,常用的有低溫甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。 粗原料氣經CO變換以后,變換氣中除H2外,還有CO2、CO和CH4等組分,其中以CO2含量最多。CO2既是氨合成催化劑的毒物,又是制造尿素、碳酸氫銨等氮肥的重要原料。因此變換氣中CO2的脫除必須兼顧這兩方面的要求。一般采用溶液吸收法脫除CO2。根據吸收劑性能的不同,可分為兩大類。一類是物理吸收法,如低溫甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一類是化學吸收法,如熱鉀堿法,低熱耗本菲爾法,活化MDEA法,MEA法等。 ③ 氣體精制過程 經CO變換和CO2脫除后的原料氣中尚含有少量殘余的CO和CO2。為了防止對氨合成催化劑的毒害,規定CO和CO2總含量不得大于10cm3/m3(體積分數)。因此,原料氣在進入合成工序前,必須進行原料氣的最終凈化,即精制過程。 目前在工業生產中,最終凈化方法分為深冷分離法和甲烷化法。深冷分離法主要是液氮洗法,是在深度冷凍(<-100℃)條件下用液氮吸收分離少量CO,而且也能脫除甲烷和大部分氬,這樣可以獲得只含有惰性氣體100cm3/m3以下的氫氮混合氣,深冷凈化法通常與空分以及低溫甲醇洗結合。甲烷化法是在催化劑存在下使少量CO、CO2與H2反應生成CH4和H2O的一種凈化工藝,要求入口原料氣中碳的氧化物含量(體積分數)一般應小于0.7%。甲烷化法可以將氣體中碳的氧化物(CO+CO2)含量脫除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性氣體CH4的含量。甲烷化反應如下: CO+3H2→CH4+H2O =-206.2kJ/mol CO2+4H2→CH4+2H2O =-165.1kJ/mol (3)氨合成: 將純凈的氫、氮混合氣壓縮到高壓,在催化劑的作用下合成氨。氨的合成是提供液氨產品的工序,是整個合成氨生產過程的核心部分。氨合成反應在較高壓力和催化劑存在的條件下進行,由于反應后氣體中氨含量不高,一般只有10%~20%,故采用未反應氫氮氣循環的流程。氨合成反應式如下: N2+3H2→2NH3(g) =-92.4kJ/mol
上一篇:上一篇:煤炭脫硫技術 下一篇:下一篇:煤制甲醇技術(二)
0
 
<menu id="qs4mc"><sup id="qs4mc"></sup></menu>
<menu id="qs4mc"><menu id="qs4mc"></menu></menu>
<menu id="qs4mc"><object id="qs4mc"></object></menu>
<xmp id="qs4mc">
久草综合网_台湾佬香蕉娱乐中文22网_久久精品一区_亚洲a区视频